EuroTeQ.eduXchange.euFAQ

Available courses for students of Technical University of Denmark

(Are you studying at another institution?)

AEROSPACE: LINEAR STABILITY & LAMINAR-TURBULENT TRANSITION (Part II) - Numerical Implementation
Transport
Organization logo: Israel Institute of Technology

About this course

It is advisable, but not mandatory to register for Aerospace: LINEAR STABILITY & LAMINAR-TURBULENT TRANSITION (Part I) - Theory at the same time as this course Part II - Numerical Transition.

The Linear Stability and Laminar-Turbulent Transition course, offered at Technion and shared within the EuroTeQ framework, introduces linear stability theory (LST) and laminar-turbulent transition of incompressible and compressible laminar flows. For reasons of effective delivery, the full scope of the taught material is divided in two parts, Theoretical Foundations and Numerical Implementation, both delivered during the winter semester. Concepts are introduced and equations are derived in LST Theoretical Foundations, while solved examples are discussed and practiced within LST Numerical Implementation. Both Theoretical Foundations and Numerical Implementation (this course) are stand-alone modules and can be taken independently of each other.


Semester Start Date: November 3, 2024

Day & Time: TBD

Contact Hours per week: 3


Recommended Literature: A single textbook describing the course content does not exist presently, but individual topics can be studied in:

Books on Flow Stability • Criminale WO, Jackson TL, Joslin RD (2019) Theory and Computation of Hydrodynamic Stability, Cambridge University Press, 2nd Ed. • Schmid PJ, Henningson DS (2001) Stability and Transition in Shear Flows, Springer

Mathematics Textbooks • Haberman R (2014) Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Pearson, 5th Ed. • Kreyszig E (2006) Advanced Engineering Mathematics, John Wiley & Sons, 9th Ed.

Numerical Methods • Boyd JP (1989) Chebyshev and Fourier Spectral Methods, Springer. Also (2000) Dover 2nd Ed. • Trefethen LN (2000) Spectral Methods in Matlab, SIAM

Articles and Matlab Codes* • * Cossu C (2014) An Introduction to Optimal Control. Appl. Mech. Rev. 66(2):02480, https://doi.org/10.1115/1.4026482 • Fedorov A (2011) Transition and Stability of High-Speed Boundary Layers. Annu. Rev. Fluid Mech. Vol. 43, pp. 79–95, https://doi.org/10.1146/annurev-fluid-122109-160750 • * Juniper MP, Hanifi A, Theofilis V (2014) Modal Stability Theory. Appl. Mech. Rev. 66(2):024804, https://doi.org/10.1115/1.4026604 • Luchini P, Bottaro A (2014) Adjoint Equations in Stability Analysis. Annu. Rev. Fluid Mech.Vol. 46, pp. 493–517, https://doi.org/10.1146/annurev-fluid-010313-141253 • Mack LM (1984) Compressible boundary layer stability theory. AGARD Rep. R-709. • * Schmid PJ, Brandt L (2014) Analysis of Fluid Systems: Stability, Receptivity, Sensitivity. Appl. Mech. Rev. Mar 2014, 66(2):024803, https://doi.org/10.1115/1.4026375 • Taira K, Brunton SL, Dawson STM, Rowley CW, Colonius T, McKeon BJ, Schmidt OT, Gordeyev S, Theofilis V, Ukeiley LS (2017) Modal Analysis of Fluid Flows: An Overview. AIAA Journal 55(12):4013-4041, https://doi.org/10.2514/1.J056060 • Theofilis V (2011) Global Linear Instability. Annu. Rev. Fluid Mech. 43:319–352, https://doi.org/10.1146/annurev-fluid-122109-160705

Expected learning outcomes

On successful completion, students will be able to formulate, discretize numerically and solve linear stability problems arising from incompressible to hypersonic flow using own-written algorithms and/or open-source linear algebra software. They will be exposed to the different facets of the linear stability eigenvalue and singular value problems, governing modal (exponential) or non-modal (algebraic, transient) growth of small-amplitude perturbations. They will have developed tools to predict whether a given laminar steady or time-periodic flow will break down to turbulence and estimate the transition location on canonical (flat plate and cone) surfaces using variants of the industry-standard e-to-the-N / amplitude method.

Examination

[unknown]

Course requirements

Incompressible and Compressible Fluid Mechanics, Advanced Engineering Mathematics, Numerical Analysis and Linear Algebra, Programming (compiled or interpreted computer languages).

Activities

Lectures and homework exercises

More information

[unknown]
  • Local course code
    86321
  • Study load
    ECTS 4
  • Level
    Bachelor
  • Contact hours per week
    3
  • Instructors
    Prof. V. Theofilis
  • Mode of delivery
    Hybrid
  • Course coordinator
If anything remains unclear, please check FAQ page.
  • Start date

    3 November 2024

    • End date
      2 March 2025
    • Main language
      English
    • Apply between
      26 Aug and 13 Sept 2024
    • Time info
      [unknown]
    Enrolment period closed